117 research outputs found

    Incremental and Transitive Discrete Rotations

    Get PDF
    A discrete rotation algorithm can be apprehended as a parametric application f_αf\_\alpha from \ZZ[i] to \ZZ[i], whose resulting permutation ``looks like'' the map induced by an Euclidean rotation. For this kind of algorithm, to be incremental means to compute successively all the intermediate rotate d copies of an image for angles in-between 0 and a destination angle. The di scretized rotation consists in the composition of an Euclidean rotation with a discretization; the aim of this article is to describe an algorithm whic h computes incrementally a discretized rotation. The suggested method uses o nly integer arithmetic and does not compute any sine nor any cosine. More pr ecisely, its design relies on the analysis of the discretized rotation as a step function: the precise description of the discontinuities turns to be th e key ingredient that will make the resulting procedure optimally fast and e xact. A complete description of the incremental rotation process is provided, also this result may be useful in the specification of a consistent set of defin itions for discrete geometry

    Voltage controlled terahertz transmission through GaN quantum wells

    Full text link
    We report measurements of radiation transmission in the 0.220--0.325 THz frequency domain through GaN quantum wells grown on sapphire substrates at room and low temperatures. A significant enhancement of the transmitted beam intensity with the applied voltage on the devices under test is found. For a deeper understanding of the physical phenomena involved, these results are compared with a phenomenological theory of light transmission under electric bias relating the transmission enhancement to changes in the differential mobility of the two-dimensional electron gas

    Sufficient conditions for topological invariance of 2D images under rigid transformations

    Get PDF
    International audienceIn ℝ^2, rigid transformations are topology-preserving operations. However, this property is generally no longer true when considering digital images instead of continuous ones, due to digitization effects. In this article, we investigate this issue by studying discrete rigid transformations (DRTs) on ℤ^2. More precisely, we define conditions under which digital images preserve their topological properties under any arbitrary DRTs. Based on the recently introduced notion of DRT graph and the classical notion of simple point, we first identify a family of local patterns that authorize topological invariance under DRTs. These patterns are then involved in a local analysis process that guarantees topological invariance of whole digital images in linear time

    The Energy Application Domain Extension for CityGML: enhancing interoperability for urban energy simulations

    Get PDF
    The road towards achievement of the climate protection goals requires, among the rest, a thorough rethinking of the energy planning tools (and policies) at all levels, from local to global. Nevertheless, it is in the cities where the largest part of energy is produced and consumed, and therefore it makes sense to focus the attention particularly on the cities as they yield great potentials in terms of energy consumption reduction and efficiency increase. As a direct consequence, a comprehensive knowledge of the demand and supply of energy resources, including their spatial distribution within urban areas, is therefore of utmost importance. Precise, integrated knowledge about 3D urban space, i.e. all urban (above and underground) features, infrastructures, their functional and semantic characteristics, and their mutual dependencies and interrelations play a relevant role for advanced simulation and analyses. As a matter of fact, what in the last years has proven to be an emerging and effective approach is the adoption of standard-based, integrated semantic 3D virtual city models, which represent an information hub for most of the abovementioned needs. In particular, being based on open standards (e.g. on the CityGML standard by the Open Geospatial Consortium), virtual city models firstly reduce the effort in terms of data preparation and provision. Secondly, they offer clear data structures, ontologies and semantics to facilitate data exchange between different domains and applications. However, a standardised and omni-comprehensive urban data model covering also the energy domain is still missing at the time of writing (January 2018). Even CityGML falls partially short when it comes to the definition of specific entities and attributes for energy-related applications. Nevertheless, and starting from the current version of CityGML (i.e. 2.0), this article describes the conception and the definition of an Energy Application Domain Extension (ADE) for CityGML. The Energy ADE is meant to offer a unique and standard-based data model to fill, on one hand, the above-mentioned gap, and, on the other hand, to allow for both detailed single-building energy simulation (based on sophisticated models for building physics and occupant behaviour) and city-wide, bottom-up energy assessments, with particular focus on the buildings sector. The overall goal is to tackle the existing data interoperability issues when dealing with energy-related applications at urban scale. The article presents the rationale behind the Energy ADE, it describes its main characteristics, the relation to other standards, and provides some examples of current applications and case studies already adopting it

    PRIMA subretinal wireless photovoltaic microchip implantation in non-human primate and feline models

    Get PDF
    Purpose To evaluate the surgical technique for subretinal implantation of two sizes of PRIMA photovoltaic wireless microchip in two animal models, and refine these surgical procedures for human trials. Methods Cats and Macaca fascicularis primates with healthy retina underwent vitrectomy surgery and were implanted with subretinal wireless photovoltaic microchip at the macula/central retina. The 1.5mm PRIMA chip was initially studied in feline eyes. PRIMA implant (2mm,1.5mm sizes) arrays were studied in primates. Feasibility of subretinal chip implantation was evaluated with a newly-developed surgical technique, with surgical complications and adverse events recorded. Results The 1.5mm implant was placed in the central retina of 11 feline eyes, with implantation duration 43-106 days. The 1.5mm implant was correctly positioned into central macula of 11 primate eyes, with follow-up periods of minimum 6 weeks (n = 11), 2 years (n = 2), and one eye for 3 years. One primate eye underwent multi-chip 1.5mm implantation using two 1.5mm chips. The 2mm implant was delivered to 4 primate eyes. Optical coherence tomography confirmed correct surgical placement of photovoltaic arrays in the subretinal space in all 26 eyes. Intraoperative complications in primate eyes included retinal tear, macular hole, retinal detachment, and vitreous hemorrhage that resolved spontaneously. Postoperatively, there was no case of significant ocular inflammation in the 1.5mm implant group. Conclusions We report subretinal implantation of 1.5mm and 2mm photovoltaic arrays in the central retina of feline and central macula of primate eyes with a low rate of device-related complications. The in vivo PRIMA implantation technique has been developed and refined for use for a 2mm PRIMA implant in ongoing human trials

    Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells

    Get PDF
    Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions

    Comparative Analysis of Gene Content Evolution in Phytoplasmas and Mycoplasmas

    Get PDF
    Phytoplasmas and mycoplasmas are two groups of important pathogens in the bacterial class Mollicutes. Because of their economical and clinical importance, these obligate pathogens have attracted much research attention. However, difficulties involved in the empirical study of these bacteria, particularly the fact that phytoplasmas have not yet been successfully cultivated outside of their hosts despite decades of attempts, have greatly hampered research progress. With the rapid advancements in genome sequencing, comparative genome analysis provides a new approach to facilitate our understanding of these bacteria. In this study, our main focus is to investigate the evolution of gene content in phytoplasmas, mycoplasmas, and their common ancestor. By using a phylogenetic framework for comparative analysis of 12 complete genome sequences, we characterized the putative gains and losses of genes in these obligate parasites. Our results demonstrated that the degradation of metabolic capacities in these bacteria has occurred predominantly in the common ancestor of Mollicutes, prior to the evolutionary split of phytoplasmas and mycoplasmas. Furthermore, we identified a list of genes that are acquired by the common ancestor of phytoplasmas and are conserved across all strains with complete genome sequences available. These genes include several putative effectors for the interactions with hosts and may be good candidates for future functional characterization

    Proteomics Characterization of Cytoplasmic and Lipid-Associated Membrane Proteins of Human Pathogen Mycoplasma fermentans M64

    Get PDF
    Mycoplasma fermentans is a potent human pathogen which has been implicated in several diseases. Notably, its lipid-associated membrane proteins (LAMPs) play a role in immunomodulation and development of infection-associated inflammatory diseases. However, the systematic protein identification of pathogenic M. fermentans has not been reported. From our recent sequencing results of M. fermentans M64 isolated from human respiratory tract, its genome is around 1.1 Mb and encodes 1050 predicted protein-coding genes. In the present study, soluble proteome of M. fermentans was resolved and analyzed using two-dimensional gel electrophoresis. In addition, Triton X-114 extraction was carried out to enrich amphiphilic proteins including putative lipoproteins and membrane proteins. Subsequent mass spectrometric analyses of these proteins had identified a total of 181 M. fermentans ORFs. Further bioinformatics analysis of these ORFs encoding proteins with known or so far unknown orthologues among bacteria revealed that a total of 131 proteins are homologous to known proteins, 11 proteins are conserved hypothetical proteins, and the remaining 39 proteins are likely M. fermentans-specific proteins. Moreover, Triton X-114-enriched fraction was shown to activate NF-kB activity of raw264.7 macrophage and a total of 21 lipoproteins with predicted signal peptide were identified therefrom. Together, our work provides the first proteome reference map of M. fermentans as well as several putative virulence-associated proteins as diagnostic markers or vaccine candidates for further functional study of this human pathogen

    Tspan8 is expressed in breast cancer and regulates E-cadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles

    Get PDF
    Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+^{+} tumours formed multiple liver and spleen metastases, while Tspan8^{-} tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up‐regulation of E‐cadherin and down‐regulation of Twist, p120‐catenin, and β‐catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal–epithelial transition. Furthermore, Tspan8+^{+} cells exhibited enhanced cell–cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several‐fold increase in EV number in cell culture and the circulation of tumour‐bearing animals. We observed increased protein levels of E‐cadherin and p120‐catenin in these EVs; furthermore, Tspan8 and p120‐catenin were co‐immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer
    corecore